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Abstract
We consider solutions that consist of solute and solvent molecules of arbitrary
sizes, shapes and internal charge distributions. The free energy of interaction
(the potential of mean force) between the molecules is analysed in terms
of a screened Coulomb potential and renormalized charge distributions of
the molecules. The emphasis in this work is to bring out a simple
physical interpretation of the theory, but the treatment is based on exact
statistical mechanical theory without any approximations. The results thereby
are the true properties of the system for given pair interaction potentials
between the constituent particles. In general, the electric potential from
any molecule in the solution can be exactly obtained for all distances by
using a (generalized) screened Coulomb potential, provided the source charges
constitute a renormalized charge distribution of the molecule. When charge
renormalization is done consistently, macroions, small ions and solvent
molecules are treated in fundamentally the same manner and all particles acquire
renormalized charge distributions that generally are different from their actual
(bare) distributions. The electrostatic free energy of interaction is given by
the interaction between the renormalized charge distributions of the molecules
as mediated by the screened Coulomb potential. The exact formalism is also
used for the primitive model of electrolytes. The concepts in the general theory
are illustrated by expressing the Poisson–Boltzmann and hypernetted chain
(HNC) approximations in this alternative framework. Conditions are given
under which the exact theory predicts the existence of attractive electrostatic
interaction between two identical particles at large distances from each other.

1. Introduction

The concept of screened Coulomb potential is important for our understanding of
electrolyte systems like, for example, simple electrolyte solutions, colloidal dispersions and
macromolecular solutions. Usually, the screened Coulomb potential is taken to mean the
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potential from a charge in an electrolyte as predicted by the Debye–Hückel theory of electrolyte
solutions. In the application of this potential to calculate interactions between charged particles
or functional groups, it is common to use the actual charges of the various entities to obtain the
electrostatic interaction energy. As we will see, this way of using a screened Coulomb potential
is inconsistent in general. In the current work we show how the screened Coulomb potential can
be generalized in exact statistical mechanics of electrolyte systems with molecular solvent. The
electrostatic potential from a charged molecule and the electrostatic free energy of interaction
between two molecules can then be obtained from the generalized screened Coulomb potential
and renormalized charge distributions of the various particles. Thereby, macroions, small ions
and solvent molecules are treated in fundamentally the same manner. In the general theory
there are no limitations on the sizes and shapes of the particles. Many-body correlations and
solvation effects (including, for instance, dielectric saturation) are implicitly contained in the
treatment. For simplicity we will only treat rigid particles that interact electrostatically and
with short-ranged, non-power-law pair interactions like, for example, hard-core potentials.
The molecules are, furthermore, assumed to be non-polarizable in the present treatment. We
will only consider homogeneous solutions.

The theory of polar molecular liquids and electrolyte systems has a long history and a
vast literature. The current paper is not intended to give a fair coverage of this field, but only
to present how it is possible to formulate an exact, but physically transparent, formalism that
brings out key elements of these kinds of systems: the ‘dressed molecule theory’ [1]. For
some key references of the background literature, see papers cited in [1].

In the exposition of the theory presented in this paper we will emphasize the physical
interpretation of the various theoretical relationships while keeping the statistical mechanics at
a very basic level (for completeness some less basic statistical mechanical arguments are
included in an appendix). Note, however, that our analysis is based on exact statistical
mechanical theory without any approximations. The results are therefore genuine properties of
the system for given intermolecular pair interaction potentials. For a more complete treatment
of the theory (including formulas to be used in practical applications) we refer to our earlier
publications [1–3] and references therein.

An exact statistical mechanical analysis of the problem is highly desirable since it provides:

(i) exact results for a given system that have to be fulfilled in any further correct developments
and applications,

(ii) general relationships between various properties of the system,
(iii) equations that can be used to calculate such properties and
(iv) a correct conceptual framework for an understanding of the properties of the system, at

least provided the analysis is physically transparent.

Due to the general nature of the analysis it is not always possible to specify the precise conditions
under which some of the results are valid for every conceivable system. For example, results
like some decay laws of the electrostatic potential for large distances are, as we will see, valid
provided the electrolyte concentration is not too high. This means that there will exist a finite
concentration below which the statement is correct—the precise range of validity is system
dependent and has, in most cases, to be explored by numerical treatments. For such treatments
we refer to the cited literature and references therein.

The outline of this work is as follows. We will first give the general definition of the
screened Coulomb potential. The renormalized charge distribution of a molecule is then
defined so the application of the screened Coulomb potential with the renormalized charge
as a source gives the actual electrostatic potential from the molecule. We will proceed to
show how these entities appear naturally in the intermolecular free energy of interaction
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(the potential of mean force). We will find that the electrostatic part of this free energy is
given by the interaction between the renormalized charge distributions of the molecules as
mediated by the screened Coulomb potential. This is a highly non-trivial result, that shows
that our way of defining renormalized charge and screened Coulomb potential is fundamentally
correct. Other charge renormalization schemes do not share these properties. To illustrate the
concepts we will show how the Poisson–Boltzmann and the hypernetted chain approximations
can be formulated using the formalism. It is also shown how effective charges appear in the
exact theory.

2. The unit screened Coulomb potential

Let ψ[q](r) denote the electrostatic potential at distance r from a point particle with charge q
(a ‘point charge’ q). When the charge is immersed in pure solvent the potential decays for
large r as [4, 5]

ψ[q](r) ∼ qϕCoul(r)

εr
= q

4πε0εrr
, r → ∞ (pure solvent), (1)

where ϕCoul(r) = 1/(4πε0r) is the Coulomb potential from a unit point charge in vacuum,
ε0 is the permittivity of vacuum and εr is the dielectric constant (relative permittivity) of the
solvent. Note that the potential is proportional to q . This holds irrespectively of the magnitude
of q , so, for example, the potential from a unit point charge is ϕCoul(r)/εr for large r and
is equal to ψ[q](r)/q there. The dielectric constant only characterizes the propagation of the
electrostatic potential over large distances, so the potential from a unit point charge is not given
by ϕCoul(r)/εr for small r . In fact, the q dependence of φ[q] is in general non-linear for small r
where the electric field from the charge is large. This is due to dielectric saturation and similar
effects. Thus, if one wants to find a ‘unit’ potential for the fluid that corresponds to ϕCoul(r)
in vacuum, ψ[q](r)/q is not a suitable choice since it depends on q . It is only in the limit of
small q that ψ[q](r)/q is everywhere independent of q .

To obtain a unit potential φ0
Coul that is of use for all r values in the fluid we therefore define

φ0
Coul(r) = lim

q→0

ψ[q](r)

q
. (2)

This definition implies that the potential from a point particle with an infinitesimally small
charge δq is given by ψ[δq](r) = δqφ0

Coul(r) for all r . Thus φ0
Coul describes the linear response

of the fluid. For large r it follows from equation (1) that

φ0
Coul(r) ∼ ϕCoul(r)

εr
= 1

4πε0εrr
, r → ∞ (pure solvent). (3)

In an electrolyte solution the electrostatic potential is exponentially screened. In the
limit of infinite dilution of the electrolyte the potential from a point charge q decays like
ψ[q](r) ∼ qe−κDrϕCoul(r)/εr for large r [6–8], which differ by the factor e−κDr from the
previous case. The decay parameter κD is the Debye parameter (κ−1

D is the Debye length)
defined from κ2

D = ∑
i ni q2

i /(ε0εrkBT ), where ni is the number density and qi the charge of
species i , the sum is taken over all ionic species, kB is Boltzmann’s constant and T the absolute
temperature. For small r the situation is similar as for pure solvent and we define φ0

Coul as
before (equation (2)) for all r . In this case

φ0
Coul(r) ∼ e−κDrϕCoul(r)

εr
= e−κDr

4πε0εrr
, r → ∞ (infinite dilution). (4)

Note that in both cases considered so far ψ[q](r) ∼ qφ0
Coul(r) for large r .

Let us now consider an electrolyte solution at finite concentration. We define the new
φ0

Coul from equation (2) by using the potential ψ[q](r) obtained at finite concentration. Again,
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the potential from an infinitesimally small point charge δq obeysψ[δq](r) = δqφ0
Coul(r) for all

r . Provided the electrolyte concentration is not too high φ0
Coul(r) still decays like a Yukawa

function exp(−κr)/r where κ is a constant [1]

φ0
Coul(r) ∼ e−κrϕCoul(r)

Er
= e−κr

4πε0 Err
, r → ∞ (finite concentration), (5)

but the decay parameter is not equal to the Debye parameter,κ �= κD, and Er in the denominator
differs from the dielectric constant εr of the pure solvent. The product ε0 Er is an effective
permittivity of the electrolyte solution and it contains contributions from both solvent molecules
and ions.

In this case, the potential from a point charge, ψ[q](r), is no longer proportional to q
(except in the limit of small q , the linear response regime). The attraction of counterions and
repulsion of coions and other effects near the point charge leads in general to a non-linear
dependence of ψ[q](r) on q even for large r values. The potential still decays like a Yukawa
function but with a prefactor different from q

ψ[q](r) ∼ q0φ0
Coul(r) ∼ q0e−κr

4πε0 Err
, r → ∞ (finite concentration). (6)

The quantity q0 can be interpreted as an effective charge, which depends in a non-linear manner
on the actual (bare) charge q . In the limit q → 0 we see that q0 ∼ q (linear response regime)
and, furthermore, from equation (4) it follows that Er → εr and q0 → q (for all q) in the limit
of infinite dilution.

The effective charge q0 contains in general contributions from both ions and solvent
molecules. The latter contribute to the effective charge despite the fact that they are
electroneutral, which is in stark contrast to the pure solvent case where they only contribute
to εr in equation (1). The reason for the difference is that the Coulomb potential decays like
1/(4πε0εrr) in pure solvent, which implies that the contributions from the internal charge
distribution of an electroneutral molecule cancel in the leading 1/r term. There remain only
contributions to higher order terms (dipolar, quadrupolar etc) which decay faster with distance.
In an electrolyte solution the decay is exponential, which implies that the contributions from
the positive and negative charges of an oriented solvent molecule in general no longer cancel
exactly in the leading term, but instead give a net contribution that decays for large r in the
same manner as the contribution from an ion, that is, like exp(−κr)/r . This is the reason why
both ions and electroneutral molecules contribute to the net effective charge.

In a completely analogous manner one can define the ‘effective point charge’ of a spherical
ion of species i in an electrolyte solution. The potential ψi (r) at distance r from the centre of
the i ion decays likeψi (r) ∼ q0

i φ
0
Coul(r) for large r , where the prefactor q0

i in general depends
non-linearly on the bare ionic charge qi . It will also depend in a non-trivial fashion on the size
of the ion. We define q0

i to be the effective point charge of the ion (there is also a phase factor
involved when φ0

Coul(r) is oscillatory, which can happen at high concentrations). Usually q0
i

is non-zero even if qi is zero, so an uncharged hard sphere in an electrolyte will in general
behave like a charged particle. As regards non-spherical particles, the decay of the potential
cannot be described simply by an effective point charge since there is an angular dependence
too; see below.

We will call φ0
Coul(r) the ‘unit screened Coulomb potential’, and as we will see it plays a

fundamental role in the theory of electrolyte systems. Remember that it is defined for all r . In
general, it is only for large r values that it has a simple functional form like in equation (5).

The primitive model of electrolytes is commonly used in electrolyte theory. In this model
the ions are charged hard spheres and the solvent is treated like a dielectric continuum, which
is characterized only by its dielectric constant εr . Equations (1) and (3) for pure solvent are
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then assumed to be identities valid for all r as an approximation. Otherwise, all results above
remain valid as they stand (except, of course, the discussion about various contributions from
solvent molecules). We will use this model as a special case to illustrate some properties of
the general theory.

As we have seen, the decay of φ0
Coul(r) is like a Yukawa function for large distances only.

Equation (5) then gives just the leading term in the asymptotic decay of φ0
Coul(r). For smaller

distances the r dependence is more complicated and higher order terms that decay faster with r
cannot be neglected. In many cases the second leading term when r → ∞ is another Yukawa
function term with a decay parameter κ ′ that is larger than κ (decay length 1/κ ′ < 1/κ) [9].
Then

φ0
Coul(r) ∼ e−κrϕCoul(r)

Er
+

e−κ ′rϕCoul(r)

E ′
r

, r → ∞, (7)

where the constant E ′
r is always a negative number. For example, for 1:2 electrolytes in aqueous

solutions at room temperature κ ′ and κ are not too different in a fairly wide concentration
interval [9] and both terms can play important roles as we will see later. When the concentration
is increased κ ′ and κ tend to each other and at some point they become equal. At higher
concentrations φ0

Coul(r) decays in an exponentially damped and oscillatory manner (then κ ′
and κ are complex numbers that are complex conjugates to each other and the sum of the two
terms in equation (7) constitutes an exponentially damped, sinusoidal function). For small r
many additional terms contribute to φ0

Coul(r).
The Poisson–Boltzmann (PB) approximation, which is based on the primitive model, is

the classical theory for electrolyte systems and is still commonly used. In this approximation
we have

φ
0,PB
Coul (r) = e−κDrϕCoul(r)

εr
= e−κDr

4πε0εrr
(8)

for all r and for all electrolyte concentrations (cf equation (4), which in general is only valid
for large distances in dilute solutions). The function φ0,PB

Coul (r) is commonly referred to as ‘the
screened Coulomb potential’ in the literature, so our concept of the ‘unit screened Coulomb
potential’ is a generalization of this function to the general exact case.

3. Renormalized charge distributions

3.1. Primitive model

Consider a particle of species i in an electrolyte solution. It can, for example, be a spherical
colloidal particle or a simple ion. We will take r as the distance from its centre. The mean
electrostatic potential ψi (r) from this particle originates from the charge of the particle and
the surrounding ‘ion atmosphere’. The charge distribution of the latter, ρatm

i (r), is mainly
caused by attraction of counterions and repulsion of coions (i.e. the ‘polarization response’ of
the surrounding solution due to interactions with the particle). The total charge distribution
ρi (r) associated with the particle consists of ρatm

i (r) and the internal charge distribution of
the central ion (e.g. a surface charge density or a point charge at the centre) described by a
charge density σi (r). Thus we have ρi = ρatm

i + σi . The electrostatic potential ψi is given by
Coulomb’s law

ψi (r12) =
∫

dr3 ρi (r13)φCoul(r32), (9)

where r12 = |r2 − r1| and φCoul(r) = ϕCoul(r)/εr is the Coulomb potential appropriate for the
dielectric continuum solvent used in the primitive model. The i particle is placed at r1 and we
look at the potential at r2.
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We now want to use the unit screened Coulomb potential φ0
Coul rather than the ordinary

Coulomb potential φCoul to describe the electrostatics in the system. To obtain the same
potentialψi (r) we can, of course, not just insert φ0

Coul instead of φCoul in equation (9). We also
have to replace ρi(r) by some other function, which we will denote ρ0

i (r), that is,

ψi (r12) =
∫

dr3 ρ
0
i (r13)φ

0
Coul(r32). (10)

The quantity ρ0
i (r) constitutes a renormalized charge density that is appropriate for use with

the unit screened Coulomb potential and is uniquely defined by equation (10). Note that the
electrostatic potential is obtained for all r12 from equation (10). Both ρi and ρ0

i includes the
internal charge distribution of the particle. The part of ρ0

i in excess of the internal charge is
denoted the ‘dress’ of the ion, so ρ0

i is also called the dressed ion charge density. To make our
definition of ρ0

i (r) more concrete, let us see how this works out in the PB approximation.

3.2. Poisson–Boltzmann approximation

The unit screened Coulomb potential in this case is given by equation (8), i.e. a simple Yukawa
function for all r . We first consider a point particle with charge q at the origin. As we have
seen, the potential ψPB

[q] (r) from the charge q is equal to the product qφ0,PB
Coul (r) provided q is

very small. This is the result of the linear PB (LPB) approximation, also called the Debye–
Hückel approximation. The potential from the linear polarization response of the electrolyte
solution around the point charge is included in qφ0,PB

Coul (r), i.e. the contributions from the ion
atmosphere around q as calculated in the linear approximation. This feature is, in fact, general,
so φ0

Coul as defined by equation (2) will always include the linear response contributions to the
potential. In the LPB approximation we have for r > 0

ρatm,PB = −ε0εr∇2ψPB ≈ −ε0εrκ
2
Dψ

PB (linear PB approximation), (11)

where we have used Poisson’s equation and the linearized PB equation. The rhs of equation (11)
gives the linear polarization response in terms of the total potential ψPB, which results from
all charges including the polarization.

If q is not small the potential is not given by qφ0,PB
Coul (r) and instead the non-linear PB

approximation has to be used. The potential ψPB
[q] (r) is given by equation (9) (with subscript

[q] instead of i ), where we have inserted total charge distribution ρPB
[q] (r) as calculated in the

non-linear PB approximation. If we want to calculate the potential by using the unit screened
Coulomb potential instead, equation (10), the linear part of the polarization response is taken
care of by φ0,PB

Coul while the non-linear contributions must be described by ρ0,PB
[q] . Thus the

difference between ρPB
[q] and ρ0,PB

[q] is that the latter does not include the linear part of the
response. Explicitly, we have

ρ0,PB = ρPB + ε0εrκ
2
Dψ

PB (nonlinear PB approximation), (12)

where the second term in the rhs removes the linear part. Note that both ρPB
[q](r) and ρ0,PB

[q] (r)
include the central charge q .

The result (12) also applies to the charge distributions associated with a particle of species
i . The renormalized charge distribution ρ0,PB

i outside the hard core of the particle is equal to
ρ

atm,PB
i + ε0εrκ

2
Dψ

PB
i . Inside the core where ρatm

i = 0, the function ρ0,PB
i consists of the sum

of the internal charge distribution of the particle and ε0εrκ
2
Dψ

PB
i , which is non-zero since ψPB

i

is non-zero there. The latter contribution to ρ0,PB
i is a nominal charge distribution that makes

sure that ρ0,PB
i gives a potential that arises from a system that fulfils the condition ρatm

i = 0
inside the core (the ‘core condition’).
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As an illustration of how this nominal distribution works, consider the LPB approximation
for the case of a central ion with core radius a and a point charge qi at its centre. In this case
ρ

0,PB
i (r) is zero outside the core, while it is ε0εrκ

2
Dψ

PB
i (r) for 0 < r < a. It also includes

the point charge qi at r = 0. If the contribution ε0εrκ
2
Dψ

PB
i (r) was not present, only the

point charge would remain and equation (10) would yield ψPB
i (r) = qiφ

0,PB
Coul (r), which is not

correct. The correct potential in the LPB case is ψPB
i (r) = q0,LPB

i φ
0,PB
Coul (r) for r > a, where

q0,LPB
i = qi exp(κDa)/(1 + κDa) is the effective point charge that includes the finite ion size

effect. One can easily check that the correct result is in agreement with equation (10) and
that the deviation of q0,LPB

i from qi results from the term ε0εrκ
2
Dψ

PB
i (r) in the core region.

Likewise, in the non-linear PB case the nominal charge distribution from this term inside the
core assures that the core condition is fulfilled.

We now leave the PB approximation and return to the general, exact case for a primitive
model of section 3.1. Then φ0

Coul(r) is not a simple Yukawa potential. Furthermore, the linear
response part of ρ0

i is not as simple as in equation (12), but it is still linear in ψi (it is a linear
functional of ψi where the kernel is a linear response function [1, 3]). Also in this case the
renormalized charge distribution contains the nonlinear parts of the polarization response and
a nominal charge distribution inside the core that takes care of the core condition.

From our definitions of screened Coulomb potential and renormalized charge density it
is so far not clear whether these quantities have any fundamental roles. This will, however,
be apparent when we treat the interaction free energy between molecules in the solution. As
we will see, the electrostatic part of the interaction free energy equals the screened Coulomb
interaction between the renormalized charge distribution ρ0 of the two molecules. Before we
do this we will give the definition of ρ0 for the general case of systems with molecular solvent.

3.3. General case with molecular solvent

Consider a molecule of species i located at the origin (its centre of mass is at the origin). It
can be a solute or a solvent molecule. We assume for simplicity that it is rigid and placed
in a certain orientation relative to the frame of reference. The orientation is described by a
variable ω. The molecule has an internal charge distribution σi,ω(r), i.e. the charge density at
coordinate r when the i molecule is in orientation ω. The interactions between this molecule
and the surrounding solvent and solute molecules polarize the surroundings by repelling and/or
attracting ions and affecting the locations and orientations of solvent molecules. The charge
distribution of this ‘ion and solvent atmosphere’ around the molecule is denoted ρatm

i,ω (r).
The total charge distribution ρi,ω(r) associated with the molecule is the sum of these two,
ρi,ω(r) = σi,ω(r) + ρatm

i,ω (r).
The electrostatic potential due to the molecule, including that from the polarized

surroundings, is given by Coulomb’s law

ψi,ω(r12) =
∫

dr3 ρi,ω(r13)ϕCoul(r32)

and, as before, we define the renormalized charge density ρ0
i,ω from

ψi,ω(r12) =
∫

dr3 ρ
0
i,ω(r13)φ

0
Coul(r32) (13)

where the unit screened Coulomb potential φ0
Coul(r) is that of the bulk solution as obtained

from equation (2). Both ρi,ω and ρ0
i,ω include the internal charge distribution σi,ω. We denote

ρ0
i,ω as the dressed molecule charge density.
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4. Intermolecular interaction (free) energy

4.1. Poisson–Boltzmann approximation and its non-local correction

The interaction free energy (potential of mean force) wi j(r) between two particles of species
i and j in a fluid is in general defined from the relationship

gi j(r) = e− wi j (r)

kB T ,

where gi j(r) is the radial distribution function (for simplicity in notation, we here assume that
the particles are spherical). In the PB approximation the interaction free energy between the
central particle (species i ) and an ion in the surrounding ion atmosphere (species j ) is given
by wPB

i j (r) = ushort
i j + ψPB

i (r)q j , where ushort
i j is the short-ranged, non-electrostatic part of the

pair interaction potential (here it is a hard-core potential). If we insert equation (10) we can
write the electrostatic part of wPB

i j (r) as

w
el,PB
i j (r12) = ψPB

i (r12) q j =
∫

dr3 ρ
0,PB
i (r13)φ

0,PB
Coul (r32) q j . (14)

The physical interpretation of equation (14) is thatwel,PB
i j is the electrostatic interaction energy

given by the screened Coulomb interaction between the dressed central particle (ρ0,PB
i ) and the

bare charge q j of the j ion in the atmosphere. This clearly shows the unequal treatment of the
central particle and the ions in the ion atmosphere. While the central particle is dressed, the
ions in the atmosphere are without dress in the PB approximation. This leads to the well known
deficiency that wPB

i j (r) �= wPB
j i (r), while it is required in the exact case that wi j(r) = w j i(r).

A fundamentally correct way to remedy this deficiency is, as we will see below, to make
the ions in the atmosphere dressed too. The electrostatic interaction energy between a dressed
j ion and the potential ψi due to the i particle is given by

wel
i j (r12) =

∫

dr4ψi (r14)ρ
0
j (r24) =

∫

dr3 dr4 ρ
0
i (r13)φ

0
Coul(r34)ρ

0
j (r24), (15)

where we have we inserted equation (10). The rhs expresses that the screened Coulomb
potential conveys the interaction between two dressed particles. All particles are treated in the
same manner and the symmetry wel

i j(r) = wel
j i(r) is satisfied. It is a nontrivial fact that the

free energy for the screened electrostatic pair interaction can be written as in equation (15);
see below. This fact gives a fundamental argument for our definitions of screened Coulomb
potential in equation (2) and renormalized charge density (dressed ion charge density) in
equation (10). These definitions allow us to write equation (15)

wel
i j (r12) =

∫

dr3 ρ
0
i (r13)ψ j (r23) (16)

where the roles of the two particles are changed; here it is the j particle that gives rise to the
electrostatic potential. This would not be possible with some other definitions. Given that
wel

i j(r12) can be expressed by both the first equality in equations (15) and (16), there is no
other option than to define the screened Coulomb potential such that the second equality in
equation (15) is fulfilled. These requirements make ρ0

i , ρ0
j and φ0

Coul uniquely defined and in
accordance with our definitions above.

If we take, as an approximation,wi j ≈ ushort
i j +wel

i j we obtain a symmetrical version of the
PB approximation. This is an approximation because there are other interaction free energy
contributions apart from the screened electrostatic one given by wel

i j . Since the ions in the ion
atmosphere interact non-locally (via their dress) with the potential from the central particle,
we may call this approximation the non-local PB approximation [2]. We will not pursue this
here, but instead turn to the exact case.
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4.2. General case in primitive model

The exact interaction free energy wi j can be written as (cf the appendix)

wi j = ushort
i j +wel

i j +wdress
i j +wbridge

i j , (17)

wherewel
i j is defined by equation (15),wdress

i j contains non-electrostatic and indirect electrostatic
effects from interactions between the dresses of the i and the j ions (it is defined in the
appendix), and wbridge

i j gives short-ranged contributions due to the most complicated effects of

the many-particle correlations (wbridge
i j is proportional to the so-called bridge function [10] of

liquid state theory; see the appendix). In the hypernetted chain (HNC) approximation, which
in many cases is an excellent approximation for electrolytes in the primitive model, wbridge

i j is
set equal to zero and one takes

wHNC
i j = ushort

i j +wel
i j +wdress

i j .

In many important cases the electrostatic interactions dominate in the behaviour of the
electrolyte system, in particular for large separations between the particles. This is the case
provided the electrolyte concentration is not too high and then bothwdress

i j (r12) andwbridge
i j (r12)

are more short ranged than wel
i j(r12), so the latter dominates the decay behaviour of wi j(r12)

for large r12

wi j (r12) ∼
∫

dr3 dr4 ρ
0
i (r13)φ

0
Coul(r34)ρ

0
j (r24), r12 → ∞. (18)

In many cases the rhs will give a dominant part of the interaction free energy for fairly
short separations too. When φ0

Coul(r) decays as in equation (7) the leading two terms from
equation (18) are given by [9]

wi j(r12) ∼ q0
i q0

j e
−κr12ϕCoul(r12)

Er
+

q ′0
i q ′0

j e
−κ ′r12ϕCoul(r12)

E ′
r

, r12 → ∞, (19)

where q0
l , l = i, j , is the effective charge introduced in section 2 and q ′0

l is an analogous quantity
(‘secondary effective charge’) associated with the second leading term. One may call q0

l the
‘primary effective charge’ when one needs to distinguish the two charges. Both q0

l and q ′0
l

are weighted integrals of the dressed ion charge distribution ρ0
l (r) in three dimensions [9] (the

weighting function is sinh(kr)/(kr)with k = κ and k = κ ′ respectively). The effective charges
reflect how strongly ρ0

l (r) couple to these two leading decay modes of φ0
Coul(r) and hence q0

l
and q ′0

l represent different manifestations of the renormalized charge density expressed as
effective point charges. Together, the two effective charges describe most features of the
charge density profile and electrostatic potential for distances larger than a few ionic diameters
from the particle surface in 1:2 electrolytes for several cases [9, 11]. The higher order terms,
not shown in equation (19), decay faster than the two terms shown when r12 → ∞.

For two particles of the same species, i = j , the first term in equation (19) will contain a
factor (q0

i )
2 and is always repulsive since Er > 0. Likewise, the second term will always be

attractive in this case since E ′
r < 0. For colloid particles in multivalent aqueous electrolytes

at room temperature the effective charge q0
l can change sign when the magnitude of the bare

charge is increased. This is the phenomenon of ‘overcharging’ or ‘effective charge reversal’
that has been observed for a long time, but has lately received a lot of renewed interest. At the
point of charge reversal q0

i = 0 and the leading term is absent. At this point the second term
becomes the dominant term when r12 → ∞ and hence there is a long-ranged electrostatic
attraction between two equally charged particles! The properties of the two kinds of effective
charges have been systematically investigated with accurate calculations for planar surfaces
by Ulander et al [11].
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4.3. Intermolecular interactions in electrolytes with molecular solvent

The result in equation (17) also applies for electrolytes with molecular solvent. For non-
spherical molecules one must consider the orientations as well as the positions of the molecules.
Consider an i molecule that is placed with its centre of mass at coordinate r1 and has orientation
ω1 (relative to the laboratory frame of reference) and a j molecule that is placed at coordinate
r2 and has orientation ω2. Then the free energy of interaction between the particles is denoted
wi j,ω1ω2(r12). The various equations have to be generalized to include orientations is analogy
to what is done in equation (13) (cf equation (20) below).

As before, in many important cases the electrostatic interactions dominate in the behaviour
of the electrolyte system, in particular for large separations between the particles. This is,
for example, the case for low electrolyte concentrations. Then wel

i j,ω1ω2
gives the leading

contribution to the free energy of interaction for large separations and we have

wi j,ω1ω2(r12) ∼
∫

dr3 dr4 ρ
0
i,ω1
(r13)φ

0
Coul(r34)ρ

0
i,ω2
(r24), r12 → ∞, (20)

whereφ0
Coul(r) is the unit screened Coulomb potential of the bulk solution, which only depends

on the distance r . The rhs of equation (20) has exactly the same appearance as the normal
Coulombic interaction energy between two charge distributions, σa(r13) placed at r1 and
σb(r24) placed at r2, interacting with the usual Coulomb potential ϕCoul(r34) in vacuum. The
essential difference is that ρ0 and φ0

Coul include polarization and other correlation effects of the
solution surrounding the molecules in accordance with the discussion in the previous sections.
The effects of the molecular solvent are implicitly contained in these quantities. One can
expect that the rhs of equation (20) in many cases will give a large or even the dominant part
of the interaction free energy for shorter separations too.

To summarize, we have seen how the screened electrostatic interaction, wel, can be
expressed in the general exact case for electrolyte systems with molecular solvent in a way that
is quite similar to how it is done in the PB approximation, but where all molecules are treated
on the same basis. In the free energy of interaction there is, apart from wel, one part, wdress,
that contains non-electrostatic and indirect electrostatic effects from interactions between the
molecular dresses and one part, wbridge, that contains more short-ranged contributions from
complicated effects of many-body correlations. In many important cases wel dominates for
intermediate to large separations, for example when the electrolyte concentration is not too
high. It is, however, possible for wdress to be more long-ranged than wel. This happens, for
example, at high electrolyte concentration, where the screening decay length is small, and
close to a critical point.
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Appendix

In this appendix we will give a brief exposition of the basic theory for the interaction free energy
(potential of mean force) wi j(r12) between two particles of species i and j at separation r12

in a fluid. For simplicity in notation we will restrict ourselves to primitive model electrolytes,
but the theory for electrolytes with molecular solvent is very similar.

The interaction free energywi j(r12) is the change in free energy that arises when the two
particles are brought from a large separation (in principle an infinite separation) to a distance
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r12 from each other. It is the sum of the direct pair interaction potential ui j(r12) of the two
particles and an indirect contribution wind

i j (r12) from the interactions with the other particles
of the fluid. The latter contribution arises because the particle distribution around the two
particles depends on the separation r12 between them.

Instead of calculating the free energy changewi j (r12) when the two particles are brought
together, one can obtain the same result by making insertions of one of the particles into the
system to two different points:

(i) to a point in the fluid far away from the other particle and
(ii) to a point at distance r12 from the other.

One then obtainswi j(r12) by taking the difference between the free energies of insertion for the
cases (i) and (ii) (free energy of insertion = reversible work against intermolecular interactions
when inserting a particle from outside the system, where it initially does not interact with the
molecules in the system). In case (i) the density of the fluid where the particle is inserted is the
bulk density. In case (ii) the density at the point of insertion r1 is affected by the interactions
with the second particle which is located at r2 (this density is given by the pair distribution of
particles around the second particle).

The quantities that tell how much a difference in density affects the free energy of insertion
are called direct correlation functions, C (for convenience we will use the notation C to denote
−kBT c, where c is the usual direct correlation function in liquid state theory) [12]. The free
energy of insertion is influenced by the density distribution in a whole neighbourhood of the
insertion point r1. If the contribution from each point r3 in this neighbourhood is assumed
to be independent of the contributions from the other points, the free energy of insertion is
obtained by application of a two-point direct correlation function, C(2)(r1, r3). (Like all pair
functions in bulk C(2) only depends on the distance r13 = |r3 − r1|.) This function tells how
much a difference in density at r3 influences the free energy of insertion at r1 and we have to
sum the contributions from all points r3. The contribution to wind

i j (r12) from, say, the particles
of species l is accordingly

∫

dr3 C(2)il (r13)[nl gl j (r32)− nl],

where the square bracket is the difference in density for insertions in case (ii) and (i) respectively.
This is an approximation since the contributions from the different points r3 are not independent
and is called the hypernetted chain (HNC) approximation

wHNC
i j (r12) = ui j(r12) +

∑

l

∫

dr3 C(2)il (r13)nl hl j (r32) (21)

where hl j = gl j − 1. It is often a very good approximation for electrolytes in the primitive
model. The dominating contribution to C(2)il (r13) for large r13 is the electrostatic interaction,
qi qlφCoul(r13), but this is not the only contribution. The remaining part of C(2)il is a short-ranged
contribution that we denote C0

il and we have

C(2)il (r13) = qi qlφCoul(r13) + C0
il(r13). (22)

(Incidentally, note that if one neglects C0
il and replaces C(2)il by qi qlφCoul in equation (21) the rhs

of this equation turns into wPB
i j (r12).) According to the Ornstein–Zernike (OZ) equation [10]

the last term (the sum) in equation (21) is equal to C(2)i j (r12) − kBT hi j (r12), which makes the
HNC approximation for wi j(r12) take on a more familiar appearance.

In the exact case one has to consider the fact that the contributions from the different
points in the neighbourhood of the insertion point are not independent. The correction to the
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free energy from the interdependence of contributions from two points r3 and r4 is given by a
very similar application of a three-point direct correlation function, C(3)(r1, r3, r4). We then
have the correction to be added to equation (21)

1
2

∑

lm

∫

dr3 dr4 C(3)ilm(r1, r3, r4)nlhl j (r32)nmhmj (r42),

where the factor 1/2 appears to avoid double counting. Furthermore, the corrections from
the interdependence of contributions from three points is given by a function C(4) etc all the
way till an infinite number of points. The sum of all these corrections, which we will denote
w

bridge
i j (r12), must be added to the rhs of equation (21) to give the exact wi j(r12), i.e.

wi j(r12) = ushort
i j (r12) + qi q jφCoul(r12) +

∑

l

∫

dr3 C(2)il (r13)nlhl j (r32) +wbridge
i j (r12), (23)

where we have written the pair potential as ui j = ushort
i j + qi q jφCoul. (In more common

terminology, the function −wbridge
i j (r12)/(kBT ) = d(r12) is called the bridge function, the sum

of all ‘bridge diagrams’ [10].) The function wbridge
i j (r12) is in general difficult to evaluate and

one often makes some approximation for it. The HNC approximation is to set it equal to zero.
It now remains to identifywel

i j andwdress
i j in the rhs of equation (23). From the anticipated

result wi j = ushort
i j +wel

i j +wdress
i j +wbridge

i j we see that they must originate from the two middle
terms in equation (23). The term qi q jφCoul contributes to wel

i j while the third term (the sum) in
equation (23) containswdress

i j and the rest ofwel
i j . We will only give a brief outline of how these

identifications can be made. Firstly, one uses the OZ equation to write hl j as an infinite sum of
terms involvingC(2) functions only (the terms are integrals of products, so-called chains, of C(2)
functions). The third term in equation (23) then becomes expressed solely in C(2) functions.
Secondly, one uses equation (22) to replace every one of these C(2) functions by the sum of C0

and the Coulombic pair potential. One can now separate the resulting terms into two groups,
one with the terms that only contain C0 functions (but no φCoul) and one with the remaining
terms (it has terms that contain only φCoul functions or both φCoul and C0 functions). The sum
of the terms in the former group constituteswdress

i j , and one can show that the sum of the latter,
together with qi q jφCoul in equation (23), is equal to wel

i j(r12) defined in equation (15).
The function wdress

i j involves non-electrostatic and indirect electrostatic effects from
interactions between ionic dresses. In fact, wdress

i j can be written like the third term in
equation (23), but with C0

il and distribution functions, h0
l j , of the ionic dresses instead of the

full distribution functions. The functions h0
i j are related to C0

i j via the OZ equation, see [3, 9],
and constitute the distribution functions that give the dressed ion charge distribution ρ0

i .
The final result is that equation (23) can be written as

wi j = ushort
i j +wel

i j +wdress
i j +wbridge

i j (24)

which is the complete, exact expression for wi j .
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